Radial and Elliptic Flow at RHIC: Further Predictions *

P. Huovinen, P.F. Kolb \dagger U. Heinz \dagger , P.V. Ruuskanen \dagger and S.A. Voloshin \S

We have presented a variety of predictions for the elliptic flow and single-particle spectra for different hadron species produced in Au+Au collisions at $\sqrt{s} = 130 \, A \, \text{GeV}$, using a relativistic hydrodynamic model. We have studied the sensitivities to the equation of state and freeze-out temperature and showed that these can be used to further constrain the model parameters and test the approach on a quantitative level. A simple expression for fitting spectra and elliptic flow data in order to extract the average radial flow and flow anisotropy has been given. Crucial features of the p_t -dependence of the elliptic flow have been elucidated with a simple schematic model. Testing the predicted p_t -dependence of v_2 for many different hadron species will clarify the validity of the picture of a thermalized expanding source with a common flow velocity for all hadrons at RHIC energies.

Figure 1: p_t -differential elliptic flow for various hadrons from minimum bias collisions at RHIC.

[†]Ohio State U.

Figure 2: The m_t -spectra of negative pions (upper left), kaons (upper right), protons (lower left) and Ω baryons (lower right) for collision centralities (top to bottom) b < 5.4, 5.4 < b < 9.9 and 9.9 < b < 13.5 fm. The spectra for different centrality bins are separated by factors of 10. The calculations were done with EOS Q and freeze-out temperatures 120 and 140 MeV. The Ω distribution is also shown for $T_f = 164$ MeV to simulate decoupling at the phase transition.

Figure 3: The effect of the EOS and the freeze-out temperature on the elliptic flow of midrapidity pions (left) and protons (right).

[‡]Jvväskvlä U.

[§]Wayne State U.